The Newton Polygon of Plane Curves with Many Rational Points

نویسندگان

  • Peter Beelen
  • Ruud Pellikaan
چکیده

This curve has the points (1 : 0 : 0) and (0 : 1 : 0) at infinity over any field. The affine equation is XY +Y +X = 0. The origin is a point of this curve. If (x, y) ∈ F8 is a point of this curve with nonzero coordinates, then x = 1. So 0 = xy + y + x = xy + xy + x = x[(xy) + (xy) + 1]. Let t = xy. Then t + t+ 1 = 0. So the Klein quartic has 3.7 = 21 rational points over F8 with nonzero coordinates. ∗Department of Mathematics and Computing Science, Technical University of Eindhoven , P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Newton Polygon of a Rational Plane Curve

The Newton polygon of the implicit equation of a rational plane curve is explicitly determined by the multiplicities of any of its parametrizations. We give an intersection-theoretical proof of this fact based on a refinement of the KušnirenkoBernštein theorem. We apply this result to the determination of the Newton polygon of a curve parameterized by generic Laurent polynomials or by generic r...

متن کامل

Sparse Parametrization of Plane Curves

We present a new method for the rational parametrization of plane algebraic curves. The algorithm exploits the shape of the Newton polygon of the defining implicit equation and is based on methods of toric geometry.

متن کامل

Non-hyperelliptic curves of genus three over finite fields of characteristic two

Let k be a finite field of even characteristic. We obtain in this paper a complete classification, up to k-isomorphism, of non singular quartic plane curves defined over k. We find explicit rational normal models and we give closed formulas for the total number of k-isomorphism classes. We deduce from these computations the number of k-rational points of the different strata by the Newton polyg...

متن کامل

Computing the Newton Polygon of the Implicit Equation

We consider rationally parameterized plane curves, where the polynomials in the parameterization have fixed supports and generic coefficients. We apply sparse (or toric) elimination theory in order to determine the vertex representation of the implicit equation’s Newton polygon. In particular, we consider mixed subdivisions of the input Newton polygons and regular triangulations of point sets d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2000